<label id="akhve"></label>
  • 
    <li id="akhve"><acronym id="akhve"></acronym></li>

    1. <li id="akhve"></li>
      <dd id="akhve"></dd>
      <th id="akhve"><big id="akhve"></big></th>
        <ol id="akhve"></ol>

      1. <button id="akhve"><tr id="akhve"></tr></button>
        <button id="akhve"><object id="akhve"></object></button>

      2. <em id="akhve"><acronym id="akhve"><u id="akhve"></u></acronym></em>
      3. <rp id="akhve"><object id="akhve"><input id="akhve"></input></object></rp>

        產品中心
        您的位置:首頁 > 產品中心 > 應用領域
        生物3D打印機

               產品簡介

               作為國際領先的生物3D打印綜合解決方案供應商,捷諾飛對生物3D打印材料特性,打印過程中對細胞生存環境的控制、打印組織功能誘導等有著系統的經驗和深刻的理解。由此,我們提供PRO、WS等滿足不同研究和應用方向的系列裝備平臺,拓寬實驗思路,豐富研究方案。

              設備擁有Distributed-TC?溫控系統,模塊化噴頭系統,Regen-MTS?多噴頭切換系統,軟件控制系統等設計,具備多項核心專利,處于全球領先水平。Regenovo 3D Bio-Architect?裝備打印生物材料兼容性強,打印活細胞存活率高,具備高精度、高擴展、高潔凈、多通道、易操作、打印方式多樣化等特點。    

              系列型號

        l   Bio-Architect?-Pro

        l   Bio-Architect?-WS

        l   Bio-Architect?-X


        產品特點 

        高精度 高擴展 高潔凈 系統支持豐富精準的打印

        生物材料兼容性廣

        l   細胞系與細胞株

        胚胎干細胞(ESC)、脂肪干細胞(ADSC)、間充質干細胞(MSC)、肝細胞(Hepatocytes)、腫瘤細胞(Tumor cell)等;

        l   天然生物材料

        明膠(Gelatin)、藻朊酸鹽(Alginate)、纖維蛋白(Fibrin)、膠原(Collagen)、瓊脂糖(Agarose)、聚氨基葡萄糖(Chitosan)、絲素蛋白(Silk fibroin)等

        l   高分子材料

        聚乳酸(PLA)、乳酸-羥基乙酸共聚物(PLGA)、聚己內酯(PCL)、羥基丁酸酯-羥基戊酸酯共聚物(PHBV)、聚對二氧環己酮(PPDO)等

        l   生物無機材料

        羥基磷灰石(Hydroxyapatite)、磷酸三鈣(Tricalcium phosphate)、珍珠質(Nacre)等


        構建復雜 · 精細結構

         












        支持活細胞3D打印 細胞存活率高




        近年相關學術成果

        1) Lei Z, Wang Q, Wu P. A Multifunctional Skin-like Sensor Based on a Printable and Thermo responsive Hydrogel[J]. Materials Horizons, 2017.

        2) Kai Huang, Jinshan Yang, Shaoming Dong, Jianbao Hu, et al. Anisotropy of graphene scaffolds assembled by three-dimensional printing[J]. Carbon, 2017.

        3) Lan Li, Fei Yu, Jianping Shi, Qing Jiang, et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing[J]. Scientific Reports, 2017, 7: 9416

        4) Zhong Cheng, Zhang Chi, Du Jingyu, Lin Xiangjin, et al. 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG[J]. Materials Science and Engineering: C, 2017.

        5) Jin Yipeng, Xu Yongde, Gao Jiangping, Yang Yong, et al. Microtissues Enhance Smooth Muscle Differentiation and Cell Viability of hADSCs for Three Dimensional Bioprinting[J]. Frontiers in Physiology, 2017.

        6) Yang X, Lu Z, Zhao J M, et al. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering[J]. Materials Science and Engineering: C, 2017.    

        7) Chui-Wei Wong, You-Tzung Chen, Shan-hui Hsu, et al. A simple and efficient feeder-free culture system to up-scale iPSCs on polymeric material surface for use in 3D bioprinting[J]. Materials Science and Engineering: C, 2017.

        8) Chao-Ting Huang, Lok Kumar Shrestha, Katsuhiko Ariga, Shan-hui Hsu, et al. A graphene polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells[J]. Journal of Materials Chemistry B, 2017.

        9) Chen C, Zhao M, Li X H, et al. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats[J]. Journal of Biomedical Materials Research Part A, 2017. 

        10) Xiaoheng Guo, Huichang Gao, Wang Y J, et al. Porous Li-containing biphasic calcium phosphate scaffolds fabricated by three-dimensional plotting for bone repair[J]. RSC Advances, 2017.

        11) Fu F, Qin Z, Li X H, et al. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering[J]. Neural regeneration research, 2017.

        12) Zou F, Zhao N, Wang Y J, et al. Enhanced osteogenic differentiation and biomineralization in mouse mesenchymal stromal cells on a β-TCP robocast scaffold modified with collagen nanofibers[J]. Rsc Advances, 2016. 

        13) Huang S, Yao B, FU X B, et al. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration[J]. Acta biomaterialia, 2016, 32: 170-177.    

        14) Liu N, Huang S, FU X B, et al. 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland[J]. Scientific Reports, 2016, 6:34410.

        15) Cheng Z, Runzhou Z, Zheng S S, et al. 3D Printing of Differentiated Bone Marrow Mesenchymal Cells as a New Method for Liver Tissue Engineering[J]. Journal of Biomaterials and Tissue Engineering, 2016. 

        16) Wang L, Xu M, Zhang L, et al. Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography[J]. Biomedical Optics Express, 2016. 

        17) Lin H H, Hsieh F Y, Hsu S H, et al. Preparation and characterization of biodegradable polyurethane hydrogel and the hybrid gel with soy protein for 3D cell-laden bioprinting[J]. Journal of Materials Chemistry B, 2016.

        18) Zhong C, Xie H Y, Zheng S S, et al. Human hepatocytes loaded in 3D bioprinting generate mini-liver[J]. Hepatobiliary & Pancreatic Diseases International, 2016. 


        技術資料獲取

        如需獲取更多捷諾飛生物3D打印裝備相關技術資料,可以通過微信掃描以下二維碼留下您的信息,我們將會有專業技術人員與您聯系;或者通過以下捷諾飛官方聯系方式獲?。?/span>

        市場熱線:0571-85788536/技術專員:+86 15268103264

        官方郵箱:consult@www.17utx.com


        日本免费AV在线观看全部网站_国产国拍亚洲精品_久久国产精品偷_亚洲偷自拍另类在线观看